3.7.80 \(\int \frac {\sqrt {c+d x^2}}{a+b x^2} \, dx\) [680]

3.7.80.1 Optimal result
3.7.80.2 Mathematica [A] (verified)
3.7.80.3 Rubi [A] (verified)
3.7.80.4 Maple [A] (verified)
3.7.80.5 Fricas [A] (verification not implemented)
3.7.80.6 Sympy [F]
3.7.80.7 Maxima [F]
3.7.80.8 Giac [F]
3.7.80.9 Mupad [F(-1)]

3.7.80.1 Optimal result

Integrand size = 21, antiderivative size = 81 \[ \int \frac {\sqrt {c+d x^2}}{a+b x^2} \, dx=\frac {\sqrt {b c-a d} \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{\sqrt {a} b}+\frac {\sqrt {d} \text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{b} \]

output
arctanh(x*d^(1/2)/(d*x^2+c)^(1/2))*d^(1/2)/b+arctan(x*(-a*d+b*c)^(1/2)/a^( 
1/2)/(d*x^2+c)^(1/2))*(-a*d+b*c)^(1/2)/b/a^(1/2)
 
3.7.80.2 Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.26 \[ \int \frac {\sqrt {c+d x^2}}{a+b x^2} \, dx=-\frac {\frac {\sqrt {b c-a d} \arctan \left (\frac {a \sqrt {d}+b x \left (\sqrt {d} x-\sqrt {c+d x^2}\right )}{\sqrt {a} \sqrt {b c-a d}}\right )}{\sqrt {a}}+\sqrt {d} \log \left (-\sqrt {d} x+\sqrt {c+d x^2}\right )}{b} \]

input
Integrate[Sqrt[c + d*x^2]/(a + b*x^2),x]
 
output
-(((Sqrt[b*c - a*d]*ArcTan[(a*Sqrt[d] + b*x*(Sqrt[d]*x - Sqrt[c + d*x^2])) 
/(Sqrt[a]*Sqrt[b*c - a*d])])/Sqrt[a] + Sqrt[d]*Log[-(Sqrt[d]*x) + Sqrt[c + 
 d*x^2]])/b)
 
3.7.80.3 Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {301, 224, 219, 291, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {c+d x^2}}{a+b x^2} \, dx\)

\(\Big \downarrow \) 301

\(\displaystyle \frac {(b c-a d) \int \frac {1}{\left (b x^2+a\right ) \sqrt {d x^2+c}}dx}{b}+\frac {d \int \frac {1}{\sqrt {d x^2+c}}dx}{b}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {(b c-a d) \int \frac {1}{\left (b x^2+a\right ) \sqrt {d x^2+c}}dx}{b}+\frac {d \int \frac {1}{1-\frac {d x^2}{d x^2+c}}d\frac {x}{\sqrt {d x^2+c}}}{b}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {(b c-a d) \int \frac {1}{\left (b x^2+a\right ) \sqrt {d x^2+c}}dx}{b}+\frac {\sqrt {d} \text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{b}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {(b c-a d) \int \frac {1}{a-\frac {(a d-b c) x^2}{d x^2+c}}d\frac {x}{\sqrt {d x^2+c}}}{b}+\frac {\sqrt {d} \text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{b}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\sqrt {b c-a d} \arctan \left (\frac {x \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{\sqrt {a} b}+\frac {\sqrt {d} \text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{b}\)

input
Int[Sqrt[c + d*x^2]/(a + b*x^2),x]
 
output
(Sqrt[b*c - a*d]*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(S 
qrt[a]*b) + (Sqrt[d]*ArcTanh[(Sqrt[d]*x)/Sqrt[c + d*x^2]])/b
 

3.7.80.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 301
Int[((a_) + (b_.)*(x_)^2)^(p_.)/((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[b/ 
d   Int[(a + b*x^2)^(p - 1), x], x] - Simp[(b*c - a*d)/d   Int[(a + b*x^2)^ 
(p - 1)/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] 
&& GtQ[p, 0] && (EqQ[p, 1/2] || EqQ[Denominator[p], 4] || (EqQ[p, 2/3] && E 
qQ[b*c + 3*a*d, 0]))
 
3.7.80.4 Maple [A] (verified)

Time = 2.93 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.38

method result size
pseudoelliptic \(\frac {\sqrt {d}\, \operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}}{x \sqrt {d}}\right ) \sqrt {\left (a d -b c \right ) a}-\operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}\, a}{x \sqrt {\left (a d -b c \right ) a}}\right ) a d +\operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}\, a}{x \sqrt {\left (a d -b c \right ) a}}\right ) b c}{b \sqrt {\left (a d -b c \right ) a}}\) \(112\)
default \(\frac {\sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}+\frac {\sqrt {d}\, \sqrt {-a b}\, \ln \left (\frac {\frac {d \sqrt {-a b}}{b}+d \left (x -\frac {\sqrt {-a b}}{b}\right )}{\sqrt {d}}+\sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}\right )}{b}+\frac {\left (a d -b c \right ) \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{b \sqrt {-\frac {a d -b c}{b}}}}{2 \sqrt {-a b}}-\frac {\sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}-\frac {\sqrt {d}\, \sqrt {-a b}\, \ln \left (\frac {-\frac {d \sqrt {-a b}}{b}+d \left (x +\frac {\sqrt {-a b}}{b}\right )}{\sqrt {d}}+\sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}\right )}{b}+\frac {\left (a d -b c \right ) \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{b \sqrt {-\frac {a d -b c}{b}}}}{2 \sqrt {-a b}}\) \(653\)

input
int((d*x^2+c)^(1/2)/(b*x^2+a),x,method=_RETURNVERBOSE)
 
output
(d^(1/2)*arctanh((d*x^2+c)^(1/2)/x/d^(1/2))*((a*d-b*c)*a)^(1/2)-arctanh((d 
*x^2+c)^(1/2)/x*a/((a*d-b*c)*a)^(1/2))*a*d+arctanh((d*x^2+c)^(1/2)/x*a/((a 
*d-b*c)*a)^(1/2))*b*c)/b/((a*d-b*c)*a)^(1/2)
 
3.7.80.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 596, normalized size of antiderivative = 7.36 \[ \int \frac {\sqrt {c+d x^2}}{a+b x^2} \, dx=\left [\frac {2 \, \sqrt {d} \log \left (-2 \, d x^{2} - 2 \, \sqrt {d x^{2} + c} \sqrt {d} x - c\right ) + \sqrt {-\frac {b c - a d}{a}} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \, {\left (a^{2} c x - {\left (a b c - 2 \, a^{2} d\right )} x^{3}\right )} \sqrt {d x^{2} + c} \sqrt {-\frac {b c - a d}{a}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{4 \, b}, -\frac {4 \, \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x}{\sqrt {d x^{2} + c}}\right ) - \sqrt {-\frac {b c - a d}{a}} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \, {\left (a^{2} c x - {\left (a b c - 2 \, a^{2} d\right )} x^{3}\right )} \sqrt {d x^{2} + c} \sqrt {-\frac {b c - a d}{a}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{4 \, b}, \frac {\sqrt {\frac {b c - a d}{a}} \arctan \left (\frac {{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c} \sqrt {\frac {b c - a d}{a}}}{2 \, {\left ({\left (b c d - a d^{2}\right )} x^{3} + {\left (b c^{2} - a c d\right )} x\right )}}\right ) + \sqrt {d} \log \left (-2 \, d x^{2} - 2 \, \sqrt {d x^{2} + c} \sqrt {d} x - c\right )}{2 \, b}, -\frac {2 \, \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x}{\sqrt {d x^{2} + c}}\right ) - \sqrt {\frac {b c - a d}{a}} \arctan \left (\frac {{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c} \sqrt {\frac {b c - a d}{a}}}{2 \, {\left ({\left (b c d - a d^{2}\right )} x^{3} + {\left (b c^{2} - a c d\right )} x\right )}}\right )}{2 \, b}\right ] \]

input
integrate((d*x^2+c)^(1/2)/(b*x^2+a),x, algorithm="fricas")
 
output
[1/4*(2*sqrt(d)*log(-2*d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(d)*x - c) + sqrt(-(b 
*c - a*d)/a)*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a 
*b*c^2 - 4*a^2*c*d)*x^2 - 4*(a^2*c*x - (a*b*c - 2*a^2*d)*x^3)*sqrt(d*x^2 + 
 c)*sqrt(-(b*c - a*d)/a))/(b^2*x^4 + 2*a*b*x^2 + a^2)))/b, -1/4*(4*sqrt(-d 
)*arctan(sqrt(-d)*x/sqrt(d*x^2 + c)) - sqrt(-(b*c - a*d)/a)*log(((b^2*c^2 
- 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 - 4 
*(a^2*c*x - (a*b*c - 2*a^2*d)*x^3)*sqrt(d*x^2 + c)*sqrt(-(b*c - a*d)/a))/( 
b^2*x^4 + 2*a*b*x^2 + a^2)))/b, 1/2*(sqrt((b*c - a*d)/a)*arctan(1/2*((b*c 
- 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)*sqrt((b*c - a*d)/a)/((b*c*d - a*d^2)*x 
^3 + (b*c^2 - a*c*d)*x)) + sqrt(d)*log(-2*d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(d 
)*x - c))/b, -1/2*(2*sqrt(-d)*arctan(sqrt(-d)*x/sqrt(d*x^2 + c)) - sqrt((b 
*c - a*d)/a)*arctan(1/2*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)*sqrt((b* 
c - a*d)/a)/((b*c*d - a*d^2)*x^3 + (b*c^2 - a*c*d)*x)))/b]
 
3.7.80.6 Sympy [F]

\[ \int \frac {\sqrt {c+d x^2}}{a+b x^2} \, dx=\int \frac {\sqrt {c + d x^{2}}}{a + b x^{2}}\, dx \]

input
integrate((d*x**2+c)**(1/2)/(b*x**2+a),x)
 
output
Integral(sqrt(c + d*x**2)/(a + b*x**2), x)
 
3.7.80.7 Maxima [F]

\[ \int \frac {\sqrt {c+d x^2}}{a+b x^2} \, dx=\int { \frac {\sqrt {d x^{2} + c}}{b x^{2} + a} \,d x } \]

input
integrate((d*x^2+c)^(1/2)/(b*x^2+a),x, algorithm="maxima")
 
output
integrate(sqrt(d*x^2 + c)/(b*x^2 + a), x)
 
3.7.80.8 Giac [F]

\[ \int \frac {\sqrt {c+d x^2}}{a+b x^2} \, dx=\int { \frac {\sqrt {d x^{2} + c}}{b x^{2} + a} \,d x } \]

input
integrate((d*x^2+c)^(1/2)/(b*x^2+a),x, algorithm="giac")
 
output
sage0*x
 
3.7.80.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {c+d x^2}}{a+b x^2} \, dx=\left \{\begin {array}{cl} \frac {\sqrt {-d}\,\mathrm {asin}\left (x\,\sqrt {-\frac {d}{c}}\right )}{a} & \text {\ if\ \ }\left (\left (c+a\,d=0\wedge b=-1\right )\vee a\,d=b\,c\right )\wedge d<0\\ \frac {\sqrt {d}\,\ln \left (2\,\sqrt {d}\,x+2\,\sqrt {d\,x^2+c}\right )}{b}+\frac {\mathrm {atan}\left (\frac {x\,\sqrt {b\,c-a\,d}}{\sqrt {a}\,\sqrt {d\,x^2+c}}\right )\,\sqrt {b\,c-a\,d}}{\sqrt {a}\,b} & \text {\ if\ \ }c\neq 0\wedge \left (\left (\left (c+a\,d\neq 0\vee b\neq -1\right )\wedge a\,d\neq b\,c\right )\vee \neg d<0\right )\\ \int \frac {\sqrt {d\,x^2+c}}{b\,x^2+a} \,d x & \text {\ if\ \ }\left (\left (\left (\left (c+a\,d=0\wedge b=-1\right )\vee a\,d=b\,c\right )\wedge d<0\right )\vee c=0\right )\wedge \left (\left (\left (c+a\,d\neq 0\vee b\neq -1\right )\wedge a\,d\neq b\,c\right )\vee \neg d<0\right ) \end {array}\right . \]

input
int((c + d*x^2)^(1/2)/(a + b*x^2),x)
 
output
piecewise((c + a*d == 0 & b == -1 | a*d == b*c) & d < 0, ((-d)^(1/2)*asin( 
x*(-d/c)^(1/2)))/a, c ~= 0 & ((c + a*d ~= 0 | b ~= -1) & a*d ~= b*c | ~d < 
 0), (d^(1/2)*log(2*d^(1/2)*x + 2*(c + d*x^2)^(1/2)))/b + (atan((x*(- a*d 
+ b*c)^(1/2))/(a^(1/2)*(c + d*x^2)^(1/2)))*(- a*d + b*c)^(1/2))/(a^(1/2)*b 
), ((c + a*d == 0 & b == -1 | a*d == b*c) & d < 0 | c == 0) & ((c + a*d ~= 
 0 | b ~= -1) & a*d ~= b*c | ~d < 0), int((c + d*x^2)^(1/2)/(a + b*x^2), x 
))